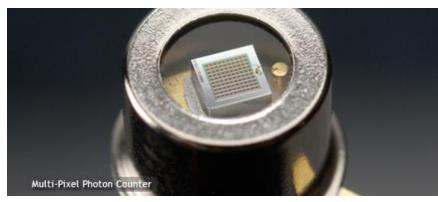


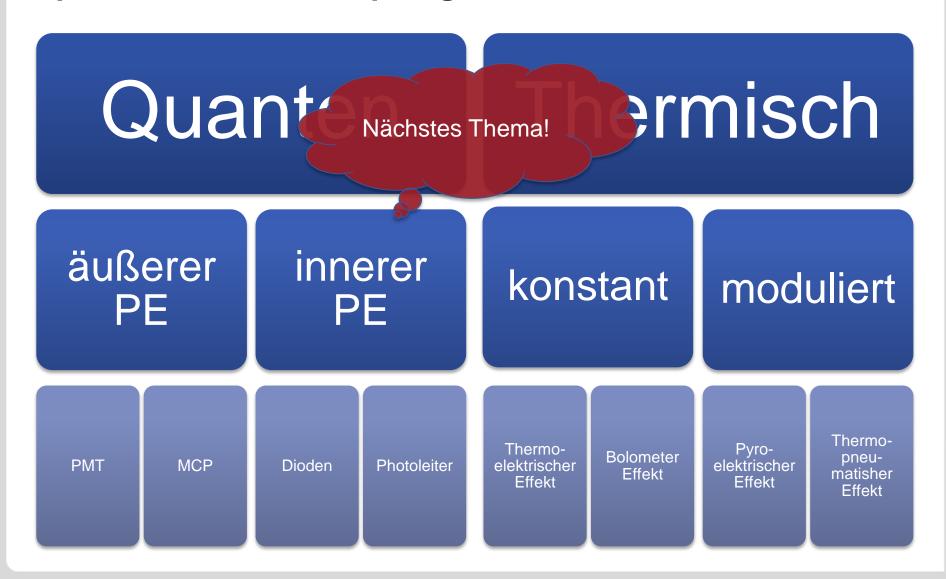
Optoelektronische Messtechnik


Vorlesung | Nr. 7 Innerer PE | Dioden | Photoleiter

LTI | Lichttechnisches Institut

Quantendetektoren

www.hamamatsu.de

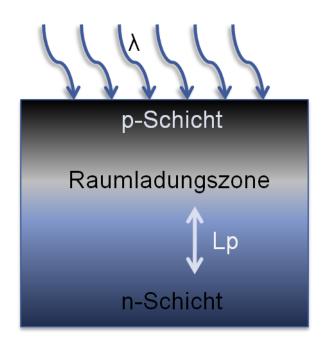


www.hamamatsu.de

- Photonen generieren Elektronen und / oder Löcher
- Photosignal proportional der Photonenrate
- Beispiele
 - Photomultiplier Tube (PMT)
 - Dioden
 - Phototransistor
 - Solarzelle
- allgemeine Eigenschaften
 - schnell 🕯
 - empfindlich &
 - Spektral selektiv <?</p>
 - Temperatursensitiv

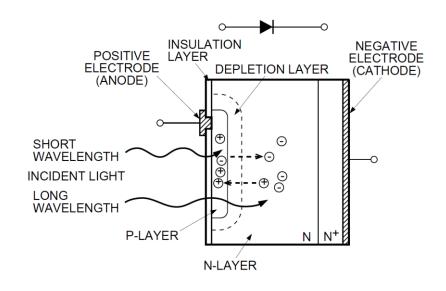
optoelektronische Empfänger

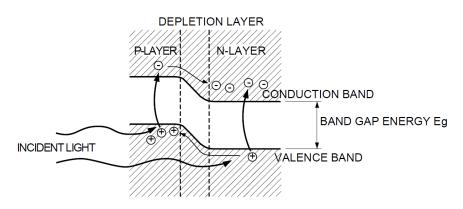
Innerer Photoeffekt



- Einfallende Strahlung wird im HL absorbiert und generiert Elektron-Lochpaare
- Inneres Feld über p-n Sperrschicht oder Metall-HL-Übergang trennt Elektronen und Löcher räumlich
- Ladungsträgertrennung
 - => elektrisches Feld
 - => Photostrom oder spannung
- Anwendung
 - Empfänger
 - Solarzelle

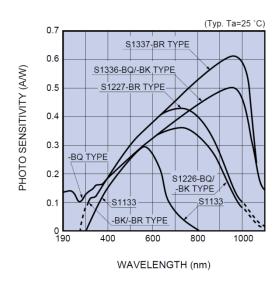
Photostrom in pn-Diode


$$I_{ph} = I_{ph,drift} + I_{ph,diff}$$


- Feld
 - p- und n- Gebiete quasineutral > Feld frei
 - Ladungsträger in RLZ getrennt
 - RLZ trägt Strom
- in der RLZ optisch generierten Träger liefern den Hauptbeitrag, den Driftphotostrom I_{ph.drift}
- die in den Neutralgebieten erzeugten Träger müssen erst in die RLZ diffundieren, um als Diffusionsphotostrom I_{ph,diff} zum gesamten Photostrom beizutragen
- die Diffusionslängen sollten daher hinreichend groß sein, vergleichbar groß wie der reziproke Absorptionskoeffizient
- die RLZ sollte breit und oberflächennah sein – dünne P-Schicht!

5

Aufbau einer Diode



- Das Feld der RLZ treibt die durch Einstrahlung generierten Elektronen als Überschussminoritätsträger von der p- auf die n-Seite und die Löcher von der n-Seite auf die p-Seite.
- Im Außenkreis fließt ohne äußere Spannung U₀ ein Photostrom in Sperrrichtung.
- Im Leerlauf lädt sich die n-Seite negativ, die p-Seite positiv auf. Die Barriere erniedrigt sich von eU_D auf e(U_D - U_{OL}); U_{OL} Leerlaufspannung bei Einstrahlung.

17.06.2016

spektrale Empfindlichkeit

$$s = \frac{I_{KL}}{\Phi_0} = \frac{e(1-\rho)\eta(\lambda)\lambda}{h \cdot c} (1 - \frac{e^{-a \cdot W_S}}{1 + a \cdot L_p})$$

- Sie nimmt zu kürzeren Wellenlängen mit der (überschüssigen) Photonenenergie ab.
- Auch deshalb, weil die Träger bei Einstrahlung von kleinen Wellenlängen näher der Oberfläche generiert werden, wo sie verstärkt rekombinieren.
- Strahlung langer Wellenlängen dringt tiefer ein, kurzwelligere wird oberflächennah absorbiert
- Für die UV-Detektion flache p-n-Übergänge
 - lonenimplantation
- Abnahme der Empfindlichkeit nach Maximum ist im Wesentlichen durch die Grenzenergie bestimmt.

optoelektronische Empfänger

Quanten

Thermisch

äußerer PE

inneror

Dioden in der Anwendung.

stant

moduliert

PMT

MCP

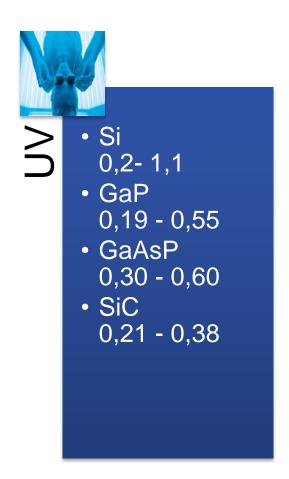
Dioden

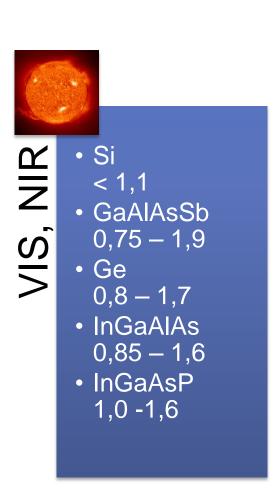
Photoleiter

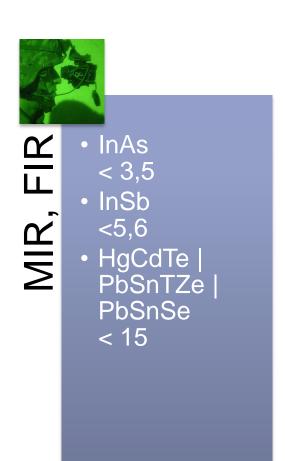
Thermoelektrischer Effekt

Bolometer Effekt Pyroelektrischer Effekt Thermopneumatisher Effekt

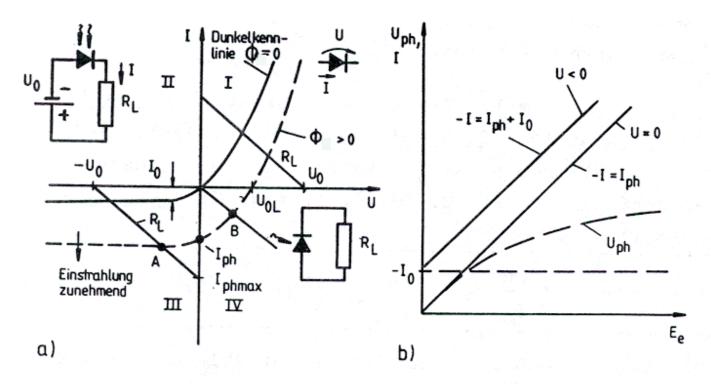
Photodioden





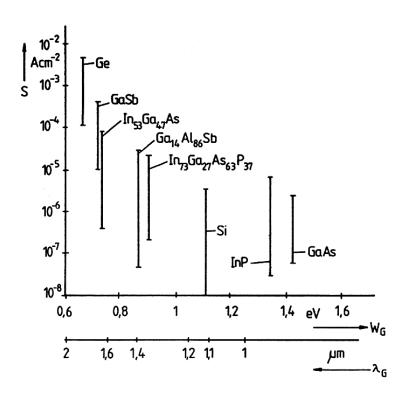

- Unterscheidung nach
 - **HL-Material**
 - Spektrale Empfindlichkeit
 - Größe
 - Elektrische Eigenschaften
 - Absolute Empfindlichkeit / Grenzfrequenz
 - Gehäuse
 - mechanische & thermische Beanspruchung
 - Aufbau | interne Filter | Optiken

Materialien von Photodioden



Alle Wellenlängenangaben in µm

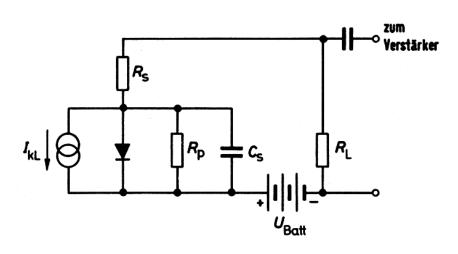
Dioden Kennlinie


 IV: Kurzschluss- und Leerlauf-betrieb (Photozelle) und III: Sperrbetrieb (Photodiode) eines bestrahlten p-n-Übergangs

Kurzschluß-Photostrom wächst linear mit der Bestrahlungsstärke, Leerlauf-Photospannung logarithmisch mit der Bestrahlungsstärke

17.06.2016

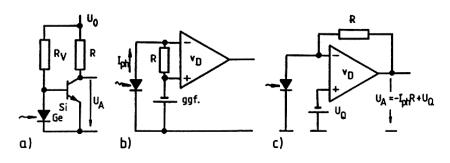
Dunkelstrom

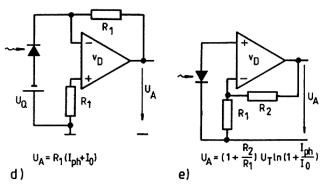


Dunkelstromdichten von p-n-Übergängen bei T = 300 K

- Dunkelstrom = i.W. thermischer Sperrsättigungsstrom
- Sperrsättigungsstrom proportional exp(-E_G/kT)
- Weitere
 - Tunnelströme durch die Sperrschicht
 - Leck-Ströme auf der Oberfläche

Zeitkonstante einer pn-Diode




$$f_3 = \frac{1}{2\pi\tau_3} = \frac{1}{2\pi C_S [R_s + R_L(1 + R_s / R_p)]}$$

- Dominate Grenz Frequenz f = Umladezeit τ₃ der Sperrschichtkapazität C_S
 - $C_S = 1 10 pF$
 - $R_L = 50 100 Ω$
 - $\tau_3 = 50 \text{ ps} 1 \text{ ns}$
- Der kleine Serienwiderstand R_s der Bahn und Kontaktierung ist ebenso wie der sehr große Parallelwiderstand R_p (Innenwiderstand) hier i.d.R. vernachlässigbar.
- Insgesamt zeigt bei modulierter Einstrahlung die Photodiode Tiefpassverhalten mit der Zeitkonstanten
- Sie ist im Vergleich zum Photoleiter erheblich schneller.

Beschaltung von Photodioden

- a) Photoschaltverstärker: Bei Unterschreitung einer gewissen Bestrahlungsstärke schaltet Transistor durch.
- b) Photodiode wirkt mit kleinem Lastwiderstand R_L << R_p als Stromgenerator, Spannungsabfall über kleinem Lastwiderstand wird verstärkt bzw.
- c) Strom-Spannungswandlung mit arbeitspunktunabhängigem Transimpedanzverstärker (Quasikurzschluss!)
- d) dto, aber mit Vorspannung und folglich Dunkelstrom I₀.
- e) Photodiode wirkt mit großem Lastwiderstand R_L >> R_p als Spannungsgenerator, realisiert mit Elektrometerverstärker logarithmisches Verhalten.

Stoßionisierung APD

Elektron (Loch) eines bei a (b) erzeugten Elektron-Lochpaares wird beschleunigt und erzeugt bei der Bewegung in der Feldzone in Richtung vom p- ins n-Gebiet (vom n-Gebiet ins p-Gebiet) durch Stoßionisation neue Elektron-Lochpaare.

Zunahme der Elektronen

Zunahme der Löcher

Ionisierungskoeffizient für Elektronen bzw. für Löcher, abhängig vom Material und der Feldstärke F

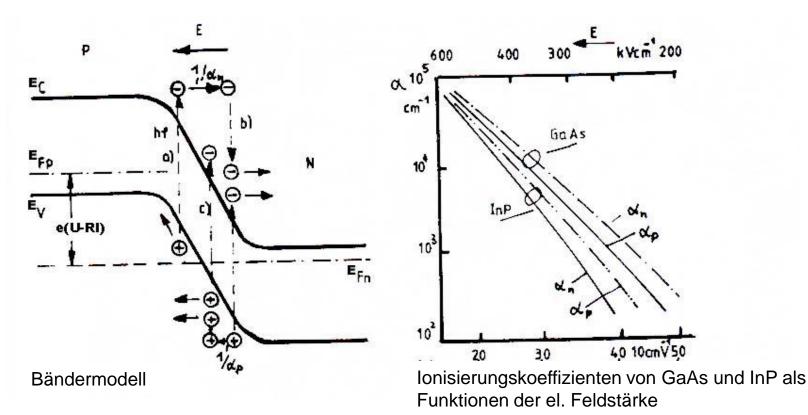
Generationsrate durch Stoßionisierung zusätzlich in Kontinuitätsgleichung zu berücksichtigen

$$dn = \alpha_n \cdot n \cdot dx$$

$$dp = \alpha_{p} \cdot p \cdot dx$$

$$\alpha_n = \alpha_{n,\infty} e^{-F_n/F}$$

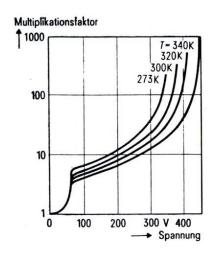
$$\alpha_{\tt p} = \alpha_{\tt p,\infty} e^{-F_{\tt p}/F}$$


$$G(x) = \alpha_n n(x) \cdot v_n + \alpha_p p(x) \cdot v_p$$

$$(-)\frac{1}{e}\frac{dj_{n(p)}}{dx} + G(x) + g(x) = 0$$

17.06.2016

Interne Lawinenverstärkung - APD



Lawinen-Photodiode – Photodiode auf Homo- oder Hetero-pn, -pin, p+p-n, - MS-Basis, bei der durch Lawinenvervielfachung in der Sperrschicht <u>hoher</u> Feldstärke (10 5 V/cm) eine innere Verstärkung erfolgt: $I_{nh} = M \cdot I_{nh} (M=1)$

17.06.2016

Verstärkung der APD

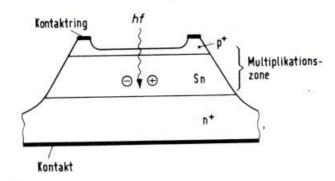
$$M \approx \frac{1}{1 - (1 - \frac{R \cdot I}{U_{Br}})^m} \approx \frac{1}{1 - (1 - m\frac{R \cdot I}{U_{Br}})} = \frac{U_{Br}}{mR \cdot I}$$

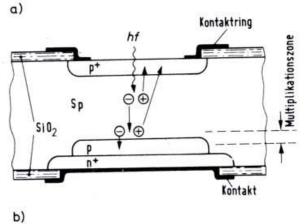
$$I = M \cdot I_{ph} \Rightarrow$$

$$M = \sqrt{\frac{U_{Br}}{mR \cdot I_{ph}}}$$

$$I = \sqrt{\frac{U_{Br}}{mR}} I_{ph}$$

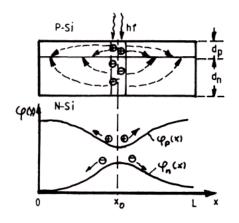
Empirischer Ansatz für die innere Verstärkung; $\alpha_n = \alpha_p$

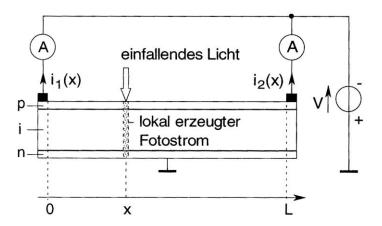

$$M = M_n = M_p = \frac{1}{1 - (\frac{U - R \cdot I}{U_{Br}})^m}$$


- U_{Br} Durchbruchspannung, m = 1.4 4für Si, 2,5 – 8 für Ge
- Nur für kleine Ströme I, so dass RI << U, und Spannungen U < U_{Br} ist der verstärkte Strom $I = M I_{ph}$ proportional dem Photostrom und somit der Strahlungsleistung – linearer Empfänger.
- Wird $U \approx U_{Br}$ eingestellt, so wird M umgekehrt proportional I und I ~ I_{ph} ^{1/2}, die APD also nichtlinear:

17

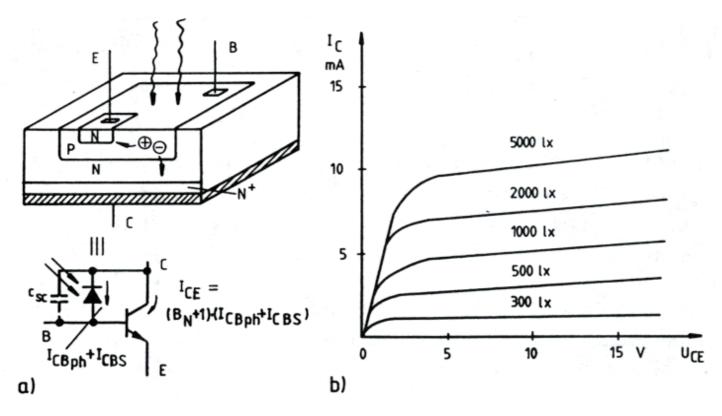
Aufbau der APD





- Lawinendioden mit ähnlicher Struktur wie PIN-Dioden mit breiter schwach dotierter Zone, nahe der Durchbruchspannung betrieben.
 - a) Mesastruktur: Zur Vermeidung von Randdurchbrüchen wird ein Guard (Schutz)ring in Kontakt mit einer hoch dotierten Zone gebracht
 - b) Planare p+sppn+ Struktur
- Kleine aktive Flächen mit 50 700 μm Durchmesser
- Materialien: Si bis 0,85 μm, III-V Halbleiter für den 1,3 1,55 μm Bereich
- Einsatz vor allem in der optischen Nachrichtentechnik
 - Schnell
 - verstärkend
 - leider nicht sonderlich linear

Positionsempfindliche Dioden


- Durch scharf gebündelten Lichtstrahl bei x erzeugter Photostrom i_{hv} teilt sich in einen Strom i₁(x) und i₂(x) auf, abgenommen an den Orten x=0 bzw. x=L; diese Ströme fließen über das p-Gebiet mit spezif. Widerstand R'.
- Es gilt: $R' \cdot x \cdot i_1 = R'(L-x)i_2 \Rightarrow$

$$x = \frac{i_1}{i_1 + i_2} L \Rightarrow x = \frac{1}{2} (1 - \frac{i_1 - i_2}{i_1 + i_2}) L$$

- ausgewertet mit Stromsummen und Stromdifferenzsignal
- Auflösungsvermögen etwa 10 µm

Photobipolartransistor

- In Sperrrichtung gepolte Kollektor-Basisdiode wird bestrahlt
- Die optisch generierten Ladungsträger bewirken einen zusätzlichen Sperrstrom
- Potentialbarriere über B-C wird abgesenkt =>Emitterstrom erhöht.

Verstärkung des Phototransistors

Ersatzschaltbild: Photodiode mit Quellstrom I_{CB,ph} parallel zum Kollektor-Basisübergang, über den auch der Dunkelstrom fließt:
 I_{CB,s} = Reststrom I_{CB,0} bei üblicherweise fehlendem Basisanschluss

$$\begin{split} &I_{C} - (I_{CB,ph} + I_{CB,0}) = B \cdot (I_{CB,ph} + I_{CB,0}) \Longrightarrow \\ &I_{C} \approx (B+1)I_{ph} \\ &U_{CE} = U_{0} - R_{L} \cdot I_{C} \end{split}$$

B – Stromverstärkung in Emitterschaltung

- Da B eine Funktion von I_C und damit auch eine von I_{ph} ist, ist der Phototransistor kein linearer Empfänger.
- Steuergröße ist hier die Beleuchtungsstärke.
- Phototransistor besitzt eine wesentlich größere Stromempfindlichkeit als die Photodiode wegen der Verstärkung B >> 1

17.06.2016

optoelektronische Empfänger

Quanten

Thermisch

äußerer PE

innerer

Nächstes Thema!

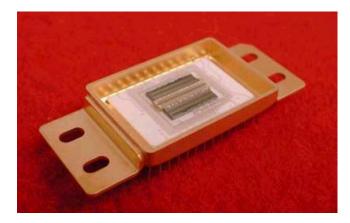
moduliert

PMT

MCP

Dioden

Photoleiter


Thermoelektrischer Effekt

Bolometer Effekt Pyroelektrischer Effekt Thermopneumatisher Effekt

Photoleiter oder Photowiderstand

PbS-Array mit 256 Elementen

- flacher Halbleiterwiderstand ohne Sperrschicht mit zwei ohmschen Kontakten an den Enden
- Funktion
 - Innerer Photoeffekt
 - Widerstand R erniedrigt sich durch Absorption von Strahlung
 - Eigen-, Störstellen- oder Intraband-Photoleitung
- Ausleseprinzip
 - Stromkreis mit Spannungsquelle & Photowiderstand
 - Erfassung des Signals als Stromänderung

Materialien

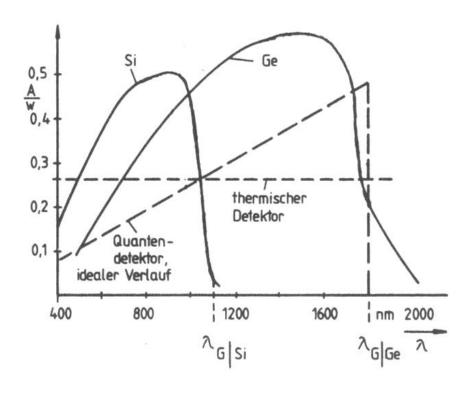
- Intrinsische Photoleiter: CdS, CdSe, PbS, PbSe, InSb, Hg_{1-x}Cd_xTe
- meist polykristallin, Widerstand von Barrieren an Korngrenzen durch Bestrahlung i.d.R. stärker erniedrigt als der vom Volumen

CdS

- typisch 100 M Ω Dunkelwiderstand und 1 k Ω Hellwiderstand bei 100 lx
- $G=\approx 10^3-10^4$.
- τ ≈50 ms
- spektrale Empfindlichkeit maximal bei 600 nm
- u.a. für Belichtungsmessung

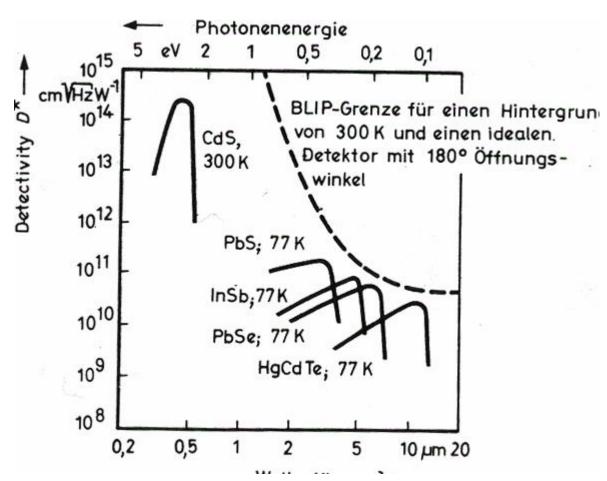
PhS

- τ ≈100 µs
- rel. hohe Detektivität im NIR Empfindlichkeit
- maximal bei 2,5 µm (300K) bzw. 2,8 µm (77K)
- zum Empfang des 2,7 µm Bandes von H₂O und CO₂ in heißen Kohlenwasserstoffabgasen


Materialien

- InSb
 - τ ≈1 µs
 - Empfindlichkeit maximal bei 6,8 µm (300 K) bzw. 5,3 µm (77 K)
- Hg_{1-x}Cd_xTe
 - lückenlos mischbar aus HgTe und CdTe mit Bandabständen < 0,1 eV,</p> schwierig die Einstellung niedriger Gleichgewichtsträgerdichten, muss gekühlt werden
 - τ ≈100 ns
 - Empfindlichkeit maximal im Bereich von 8 20 µm
 - wird fast die BLIP-Grenze erreicht (BLIP background limited infrared photodetector)

Stromempfindlichkeit von Photoleitern



- von Ge und Si, verglichen mit thermischen Empfänger und idealem Quantendetektor ohne innere Verstärkung
- λ_G Grenzwellenlänge

Detektivität intrinsischer Photoleiter

BLIP – background limited infrared photodetector